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Abstract
Portable chest radiography is a valuable tool for screening patients hospitalized in intensive
care, providing visual cues for diagnosis and physiological measurements. However, its
practicality comes at the cost of quality, which is mainly affected by misaligned body
positioning, thus increasing x-ray misinterpretation rates. This paper presents a novel
methodology for the detection of the lung field boundaries in portable chest radiographs of
patients with bacterial pulmonary infections. Such infections are radiographically manifested
as foci of consolidations which can lead to vague or invisible lung field boundaries, difficult to
distinguish even by experienced physicians. Conventional and state-of-the-art approaches
address mainly stationary radiographs, whereas only a few of them cope with pulmonary
infections. The proposed methodology is based on an active shape model incorporating shape
prior information about the lung fields. The model is initialized by a novel technique utilizing
a set of salient points detected on the peripheral anatomic structures of the lungs. A selective
thresholding algorithm based on a spinal cord sampling process supports both the initialization
and the evolution of the model for the detection of the lung field boundaries. The experiments
show that the proposed methodology outperforms state-of-the-art approaches.

Keywords: portable chest radiography, lung, infections, active shape models, thresholding,
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1. Introduction

The first and the most critical step in computerized analysis of
chest radiographs is the detection of the lung field boundaries.
Once the boundaries of the lung fields are defined, assessment
of the condition of the lungs and physiological measurements
can take place [1, 2]. Plain chest radiographs are usually
obtained in a controlled setup where the patients are positioned
in a standard way at the x-ray device. However, in the case
of critically ill patients, this is not always feasible as they may
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be in pain or disabled. To cope with this problem, portable
x-ray devices are commonly used in intensive care to obtain
the radiographs from various relative distances and angles to
patients immobilized in bed—not necessarily in a standard
position. However, its practicality comes at the cost of quality
mainly because of misaligned body positioning during image
acquisition [3]. Consequently, such radiographs are more
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visible as bright shadows interfering with the interior lung
intensities and can lead to weak lung field boundaries, difficult
to distinguish even by experienced physicians. Therefore,
a computational approach that would robustly detect the
boundaries of the lung fields would be an asset to the medical
community.

Since the beginning of the 1960s, a variety of
computational approaches to the detection of the lung field
boundaries in plain chest radiographs have been proposed.
These include rule-based methodologies [6–12], neural
network, Markov random fields and other pattern classification
approaches [1, 13, 14], active contour models [15], active
shape and active appearance models [16] and graph cuts [17].
The studies [6–11] indicate that the detection performance
of most rule-based methodologies can degrade if the quality
of the radiograph is poor or if the positioning of the patient
deviates from the standard. Recently, a rule-based approach
coping with the issue of positioning has been proposed in
[12]. This approach is unsupervised and defines a set of
salient control points around the lung fields. The salient
point detection process is supported by a selective thresholding
algorithm that cuts off image intensities based on local
intensity histograms sampled from the spinal cord. The
detected points are then intuitively interpolated by Bézier
curves [18]. The preliminary results presented indicate its
suitability for portable radiography, its robustness to the
presence of consolidations and its advantage against the graph
cuts approach [17]. A drawback of this methodology is that it
may produce implausible shapes especially if parts of the lung
fields are excluded from the radiograph.

Supervised state-of-the-art approaches that have provided
excellent solutions to the detection of the lung field boundaries
include active shape and active appearance models [1, 5,
16]. Active shape models (ASMs) [19] represent the shape
of an image region by the principal components of landmark
point vectors, whereas the grey-level appearance of that region
is limited to its border and consists of the normalized first
derivative of the intensity profiles centred at each landmark
that run perpendicular to the region’s contour. The evolution
of the model involves the minimization of the distance between
the true and the modelled first derivative profiles of the
region. Active appearance models (AAMs) [20] have been
proposed as an alternative to ASMs. In AAMs, a combined
principal component analysis of the landmarks and pixel
values inside the region is made facilitating the generation
of plausible instances of both geometry and texture. The
evolution of the model is steered by the difference between
the true pixel values and the modelled pixel values within
the region. The comparative advantage of the ASMs and the
AAMs over pattern classification and rule-based approaches
is that they incorporate a priori shape information, thus
they are capable of producing more plausible shapes in
their output. However, their dependence on local image
derivatives makes them sensitive to fitting weak boundaries
thus increasing the likelihood of the contour to leak through
these boundaries. Experimental results of the application of
an ASM for the detection of the lung field boundaries in
the presence of a bacterial infection have been presented in

[5], where the results reported indicate the prevalence of such
errors. Although ASMs have not yet been applied explicitly
on portable radiographs, their shape-constrained deformability
makes them a competent candidate.

In this paper, we propose a novel methodology for
lung field boundary detection suitable for portable chest
radiographs of patients with bacterial pulmonary infections.
The proposed methodology is based on the ASM approach
which is initialized and enhanced by techniques from [12],
in order to limit contour leaking in the presence of lung
consolidations. The initialization of the ASM is determined by
a novel technique utilizing a set of salient points detected on
the peripheral anatomic structures of the lungs. A selective
thresholding algorithm based on a spinal cord sampling
process supports both the initialization and the evolution of
the model for the detection of the lung field boundaries. This
methodology provides robustness to the lung field deformation
in the presence of weak boundaries and produces plausible
shapes even if parts of the lung fields are excluded from the
radiograph. Moreover, as in [12] but unlike the conventional
approaches, the lung field regions overlapped by the heart are
not excluded since abnormalities due to bacterial infections
may be present, even behind the heart [4].

The remainder of this paper consists of three sections.
Section 2 describes the proposed methodology. Section 3
presents the results of its experimental evaluation in
comparison with relevant state-of-the-art approaches. The
conclusions derived from this study are summarized in the
last section, where perspectives for future research are also
provided.

2. Methodology

The proposed methodology assumes that (a) the patient’s body
may not necessarily be aligned with the portable x-ray device,
since he/ she may be immobilized in bed and (b) the spinal
cord lies roughly somewhere in the middle of the radiograph,
considering that both the patient’s lungs are examined.

Let I be a new chest radiograph of size N × M pixels.
The detection of the lung field boundaries is realized in three
phases:

(1) salient points detection;
(2) selective thresholding;
(3) ASM-based image segmentation.

In the first phase, a set of points indicating two regions
bounded by the outer ribcage and the spinal cord is detected.
This set of points is used as input to the next phases. In the
second phase, the chest radiograph I is processed so that image
regions irrelevant to the problem investigated are subtracted
from it. In the last phase, the processed image is used to
guide the evolution of the ASM, which is modified so as to
achieve robust and accurate detection of the lung fields. The
three phases of the proposed methodology are described in the
following subsections.
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of the mean shape of the left and the right lung field, the
corresponding lung field model is iteratively scaled up until
it reaches a maximum overlap with the shapes of the non-
zero regions of BL

IT (I ) and BR
IT (I ) , respectively (figure 3(h)).

The overlap � between the areas of two shapes; a1 and a2, is
defined by the ratio [26]

� = a1 ∩ a2

a1 ∪ a2
. (8)

The translation, rotation and scaling of the shape model
are realized by the application of the following well-known
geometric transformation on each of its landmarks (x, y) [23](

x ′

y ′

)
=

(
�x
�y

)
+ � ·

(
cos � − sin �
sin � cos �

) (
x
y

)
, (9)

where � x and � y correspond to the horizontal and vertical
translations of the shape’s centre of mass, � is the rotation
angle of the spinal cord and � is the scaling factor of the
shape.

The proposed ASM initialization algorithm is imple-
mented as follows:

Step 1. Generate rough binary masks BL
IT (I ) , BR

IT (I ) for each
lung field:

• calculate BIT (I ) = BI (I ) ∧ BT (I ) .
• divide BIT (I ) into two parts based on the spinal cord

points and generate images BL
IT (I ) and BR

IT (I ) from each
part, such that BIT (I ) = BL

IT (I ) ∨ BR
IT (I ) .

Step 2. For each Bi
IT (I ) , i = L, R:

• Calculate its centre of mass oi by its first-order geometric
moments.

Step 3. Calculate the rotation angle � of the spinal cord by
linear regression of the spinal cord points.
Step 4. Initialize lung field models:
For each model xi = x̄i + � i · bi

x, i = L, R:

• Set scale � i = � initial.
• Set initial overlap � i

max = 0.
• Repeat the following until maximum � i is found.

– Transform x̄i using oi , � , � i in equation (9).
– Estimate the overlap � i of x̄i with the non-zero area

of Bi
IT (I ) .

– � i = � i + � step

• Set model parameters bi
x = 0.

2.3.2. Evolution. The initialized ASM evolves according
to a simple iterative scheme [19]. Each landmark can move
along a direction perpendicular to the contour by s positions
on either side of the contour, evaluating 2s + 1 positions, in
total. The new position (x ′

i , y ′
i ) of each landmark i = 1, . . . , n,

on the search direction, is determined as the one minimizing
the Mahalanobis distance

µ( d′
ij ) = (d′

ij − d̄i )TC−1
di (d′

ij − d̄i ), (10)

where d′
ij is a vector of normalized first derivatives estimated

from the 2s + 1 pixel intensity profile centred at each of
the possible new landmark positions (x ′

ij , y ′
ij ), i = 1, . . . ,

Figure 4. Detection of the lung fields after initialization with the
contours illustrated in figure 3(h). The model for each lung field has
been built with the data set used in the experiments.

ASMMethodology 
[12]

Proposed 
methodology

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

left lung fields

right lung fields

Figure 5. Graphical representation of the results presented in
table 1.

n, j = 1, . . . , 2s + 1. After all the landmarks are updated,
the shape model is fitted to the new landmarks. The ASM
evolves until a proportion pclose of landmarks ends up within
s/2 of its previous position, or until a number of Mmax
iterations is reached. The convergence of this algorithm
improves by repeating this process with intensity profiles
sampled at multiple resolutions Rmax, considering respective
local appearance models of multiresolution image pyramids
[22, 23].

The evolution of the ASM on a new chest radiograph is
likely to get affected by the presence of irrelevant anatomic
structures or external objects. Consequently, the lung field
boundaries may be missed and contour leaking may be
observed, especially if the boundaries are weakly defined. To
alleviate this problem we introduce limitations to the evolution
of the ASM by imposing constraints derived from T(I).

The proposed approach for the evolution of the ASM
considers the possibility that the non-zero pixels of T(I)
correspond to the lung fields and prohibit the contour to move
towards them in I. This way it is less likely for the ASM contour
to leak inside the lung fields. The initialization of the model as
described in the previous subsection and the incorporation of
multiresolution local appearance models help the algorithm to
avoid trapping into irrelevant regions. Moreover, the a priori
shape information included in the ASM helps the algorithm to
achieve a plausible delineation of the lung fields even if part
of them remains joint with their surroundings, or artefacts are
present, in T(I).

The proposed ASM evolution algorithm is implemented
as follows:

Step 1. Update landmark positions:
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(d) (e) ( f ) 
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Figure 6. Delineations of the right lung fields obtained by the application of the proposed methodology (a)–(c), the methodology proposed
in [12] (d)–(f ) and the original ASM (g)–(i), on the same x-ray images.

• For each possible new landmark position (x ′
ij , y ′

ij ), i =
1, . . . , n, j = 1, . . . , 2s + 1:

– Calculate a profile of normalized first derivatives
d′

ij = (dij 1, dij 2, . . . , dij 2k)T on I, centred at this
landmark position perpendicular to the contour.

– Calculate the Mahalanobis distance µ( d′
ij ).

– From all d′
ij , such that T (I (x ′

ij , y ′
ij )) = 0, find

µ min(d′
i ) = min

j =1,...,2s+1
(µ( d′

ij )) .

– (x ′
i , y ′

i ) = (x ′
ij , y ′

ij ) is the new position of landmark i.

Step 2. Fit the current shape model to the updated landmarks:

• Set x ′ = (x ′
1, y ′

1, . . . , x ′
n, y ′

n)T .
• Calculate the new model parameters for x′ from

equation (6).
• Constrain each component |bl | < c

√
� l of bx′ , c > 0, l =

1, . . . , t, to ensure plausible shapes.

Step 3. Repeat steps 1–3 until a proportion of pclose of points
ends up within s/2 of the previous positions, or Mmax iterations
are reached.
Step 4. Move to the next resolution level.

Step 5. Repeat steps 1–5 until the finest resolution level Rmax
is reached.

3. Experimental evaluation

The effectiveness of the proposed approach was evaluated on
a set of 107 anonymous chest radiographs obtained with a
portable x-ray device from patients with pulmonary bacterial
infections, manifested as consolidations. The patients were
hospitalized in an intensive care unit of the Chest Hospital
of Athens ‘Sotiria’. This is a challenging data set since the
majority of the radiographs are misaligned and in some cases
parts of the lung fields are even excluded from the radiograph,
while a variety of external objects used for patients’ monitoring
and support are also present.

All radiographs used in the experiments were digitized
at 8 bits and have been downscaled to fit a 256 × 256 pixel
bounding box. For each model parameter, a fixed setting
was selected that yielded good performance, after initial pilot
experiments. A shape model explaining 98% of the variance
(f v = 0.98) was constructed. Other settings include three
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