
 

  
Abstract—Ontologies are an effective means to formally spec-

ify and constrain knowledge. They have proved their utility in 
various data mining applications, especially in annotating text to 
render it machine interpretable. More challenging research per-
spectives arise when ontologies are used to annotate images 
where the information is encoded in numeric pixel values rather 
than in words and language grammar. Current approaches to 
bridge the gap between the pixel-based foundational representa-
tion and high level image semantics include the utilization of tax-
onomies describing 2D spatial relations between the depicted 
objects and hence linking image features with semantics. To this 
direction we present a novel ontological approach that formalizes 
concepts and relations regarding image representations for 
medical image mining. It provides descriptors for pixels, image 
regions, image features, and clusters. It extends previous ap-
proaches by including assertions of spatial relations between 
clusters in multidimensional feature spaces. The relational asser-
tions enable the linkage between a given image, image region and 
feature(s) to the object they represent. The proposed approach is 
more general than most current approaches and can be easily 
extended to support multimodal data mining.  
 

Index Terms—Image mining, medical images, ontologies, se-
mantics, description logics, owl. 

I. INTRODUCTION 
NTOLOGIES are formal and hence computer interpret-
able representations of the invariant properties of the 

entities in a domain. In order to emphasize the use of a formal 
language in domain representations, we here subscribe to the 
notion of formal ontologies  [1], understood as theories that 
attempt to give precise representations of the types of entities 
in reality, of their properties and of the relations between 
them, using axioms and definitions that support algorithmic 
reasoning. Furthermore we make a clear distinction between 
knowledge representation artifacts and ontologies proper, 
along the traditional philosophical distinction between episte-
mology and. ontology  [2]. 

Since the beginnings of this decade many studies have con-
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sidered ontologies as a means for semantic image annotation 
 [3]. An imaging application ontology had been proposed by 
 [4], which creates links between the radiology imaging vo-
cabulary RadLex and the Foundational Model of Anatomy 
 [5]. A different approach is pursued in  [6] by delineating the 
FMA as a source for image entity descriptors, whereas in  [7] 
an ontology for annotation of radiographic images (AIM) has 
been proposed.  

Ontology-based semantic image annotation can contribute 
in image management tasks such as indexing and sharing of 
medical images and regions of interest by providing a com-
mon semantic reference to align and query the heterogeneous 
data available in different repositories  [8]. However, the 
enhancement of image mining tasks with axioms from formal 
ontologies is a major challenge indicated in various studies 
 [9]- [12]. In content-based image retrieval, ontologies are usu-
ally considered as a link between the high level image seman-
tics, such as our understanding of real-world objects, and the 
low level features of their imaging manifestations, such as 
their intensity, texture and shape. In this context, modeling of 
2D spatial relations between the depicted objects has also 
been considered  [9]. Ontological approaches proposed for the 
formalization of low level features include the ontology of 
MPEG-7 visual descriptors (VDO) in multimedia  [10], and 
the COMM ontology  [11] which has been used for the de-
scription of low level features in  [12].  

In  [13] a definition of an image ontology was realized indi-
cating four specifications: a) spatial relations between the de-
picted objects, b) uncertainty of the concepts and their media 
properties, c) associations between low level features and 
higher level semantic properties of the images, and d) an asso-
ciated probabilistic reasoning service which can use available 
feature observations and concept likelihoods to infer prob-
abilities for other concepts in presence of uncertain relations. 

 A recent study  [14] proposes an ontology of fuzzy 2D spa-
tial relations between depicted objects, such as “Left of” and 
“Close to”, for the guidance of semantic image interpretation. 
This approach was motivated by the importance of structural 
information in image interpretation, and by the intrinsically 
ambiguous nature of most spatial relations. Its utility was 
demonstrated for the annotation and analysis of brain struc-
tures in magnetic resonance images.  

Motivated by the afore-mentioned studies, in this paper we 
present an ontology of image representations to support con-
tent-based mining of medical images. This is realized by ex-
tending the concept of spatial relations described in  [14]  from 
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the 2D image space to multidimensional feature spaces, allow-
ing the definition of spatial relations between clusters of fea-
ture vectors that represent properties of image regions. It is 
rooted in BioTop  [15], an upper ontology for the life sciences 
formulated in OWL-DL  [16]. BioTop was chosen due to its 
more than 700 logical axioms, and its compatibility with the 
upper level ontologies DOLCE  [17], [18], BFO  [19] and the 
OBO relation ontology  [20]. 

The presented endeavor aims to fulfill the following goals: 
• To reduce the ambiguity in recognition of image content 

objects in medical images; 
• To use automated reasoning for classifying image content 

and sceneries; 
• To search and retrieve images based on their explicit - 

and due to the reasoning ability even to implicit - seman-
tic content. 

The rest of this paper consists of four sections. In Section II 
we outline requirements for an ontology for image interpreta-
tion. Section II describes the implementation of the needed 
entities in a proposed ontology. Section IV discusses the con-
tribution of this work in comparison with similar works in the 
literature, and the last section summarizes initial conclusions 
of our study.  

II. DISCRIMINATING REAL WORLD OBJECTS AND THEIR 
REPRESENTATIONS 

Interpreting medical images requires knowledge about ca-
nonical and abnormal body structures that is matched against 
the pixel data. From an ontological perspective we have cate-
gorically different kinds of entities, which are, however, often 
intermingled in discourse. So is it common to talk about "an 
opacity observed in a lung", although the opacity is not in the 
lung but in the image of the lung (and may correspond to, e.g. 
a tumor in the lung). The main source of confusion is mistak-
ing the anatomical entities that are represented for the repre-
sentation itself, i.e. the corresponding image. As an example, 
the term "right margin of heart" does not describe anything 
tangible in human anatomy, since 3D objects like hearts do 
not have margins. Instead, such descriptors refer to a represen-
tational entity, i.e. in a radiological image or a drawing. This 
example sheds light on the important ontological notion of 
representation as the relation between representational entities 
and the objects they represent  [21].  

In BioTop a representational entity is any entity that is an 
agent in a representation. With regard to images we narrow 
our view to so-called information artifacts as introduced by 
OBI  [23]. The same information artifacts can inhere in differ-
ent bearers, e.g. data media such as a computer disc or a hard-
copy, just as a text that can be on paper and encoded in a PDF 
file. 

III. FORMALIZATION OF IMAGE REPRESENTATIONS 
We here present the Image Representations Ontology (IROn), 
which extends BioTop to cover the realm of the medical im-
age representations abundantly used in image mining. We 

distinguish between the subject matter of medical imaging, 
image-related entities, vector space-related entities, diagnostic 
interpretations, and concrete domains. 

A. Representations of Subject Matter of Medical Imaging  
This encompasses everything represented by parts or fea-

tures of one or more images but is not part of the image itself. 
The representation of the subject-matter is not part of IROn 
itself, as these classes can be provided by numerous biomedi-
cal vocabularies, including SNOMED CT, RADLEX, and 
FMA  [22], [6]. 

We distinguish between the following types of entities. An 
image feature or region represents iron:subjectMatter of one 
of the following types:  

1) Anatomical Entities such as lung, heart and diaphragm, 
but also Devices, such as pacemakers and catheters, reside 
under biotop:MaterialEntity. 

2) Spaces and Boundaries such as the mediastinal space 
and the lung boundaries, reside under biotop: Immateri-
alPhsyicalEntity. 

3) Pathological or Interventional Processes such as a 
course of bacterial infection or the insertion of a catheter, re-
side under biotop:Process.  

4) Static Properties of Anatomical Entities such as an infil-
tration of the lung tissue, reside under biotop:State. 

5) Metabolic or Biochemical Activities of Certain Biologic 
Structures include entities that are realized in virtue of their 
bearer's physical makeup  [19], and they reside under bio-
top:BiologicalFunction. 

B. Image-related Entities 
Images are represented directly by the following entities: 
1) Whole Images, subsumed by biotop:InformationEntity.  
2) Pixel, as the atomic building block of an image, sub-

sumed by biotop:InformationEntity. 
3) Image Regions of Interest (ROIs) that consist of self-

connected regions of pixels. These regions can have arbitrary 
shapes, e.g. the ROI "left lung" (representation of the left 
lung), "heart" (representation of the heart)1, also subsumed by 
biotop:InformationEntity. 

4) Image Features, as emerging properties of ROIs, images 
or image collections such as time-series images, subsumed by 
biotop:Quality. Features considered include i) descriptors of 
intensity (opacity) such as grey-level histograms, ii) descrip-
tors of texture such as Gabor energies, iii) descriptors of 
shape, such as curvature, iv) position, and v) size; all sub-
sumed by biotop:Quality.  

5) Image Attributes, such as the DICOM attributes as bio-
top:Quality and their values as biotop:QualityRegion de-
scribing the whole image together with the process of the cap-
ture of the image. 

C. Vector Space-related Entities  
The following kinds of entities are included: 

 
1 Note that often the same terms are used for denoting anatomical structures 
(in reality) and the image feature representing the anatomical structure. 



 

1) Vector spaces, regardless of their dimensionality. In Bio-
Top they are subsumed by biotop:SpatialRegion.  

2) Vectors that can be formed by a set of image features, 
such as the grey-level histograms. They are subsumed by bio-
top:InformationEntity. 

3) Clusters of feature vectors extracted from an image re-
gion, also subsumed by biotop:InformationEntity. 

D. Diagnostic Interpretations 
The basic idea of diagnostic relations is that for a person 

(interpretant) an image entity (a sign) represents some kind of 
reality outside the image (an object), according to Peirce's 
Theory of Signs  [24]. We distinguish between 
representational relation assertions (RRAs) and spatial relation 
assertions (SRAs). Both are not modeled as object properties 
but as more complex classes like the reifications used in  [14], 
being subclasses of iron:ImageInterpretation, a subclass of 
biotop:Process. 

1) RRAs: relate a given image, an image region, an image 
feature, or a set of features to the object it represents. For ex-
ample, such an object can be the opacity in a chest radiograph 
with a tumor in a patient’s lung. RRAs bear probability values 
that vary according to the suspected pathologic condition, the 
image features, and the interpretant's knowledge. 

iron:RRA equivalent-to iron:ImageInterpretation and 
  has-agent some biotop:Human and  
  has-participant some  
      (iron:ImageFeature and  
     represents only iron:SubjectMatter) and  
     has-probability iron:ProbabilityRange 

2) SRAs: relate clusters to each other. Such relations can 
also include vectors since a single vector can be considered as 
a cluster of unitary cardinality. With the proposed ontology, 
clusters can be defined in n-dimensional (nD) feature spaces, 
where n>0; therefore, directional relations referring to a two-
axes coordinate system (n=2), like “Right of”, “Left of”, 
“Above” and “Below” or even to a three-axes system (n=3) 
that includes “Front of” and “Behind from” as proposed in 
 [14] are inadequate to describe their relative positioning. To 
this end, for each of the n axes we define directional relations 
between the clusters indicating whether one cluster is on the 
right or on the left of another cluster across axis m, where 
m=1, 2, ...n.  Such relations are denoted as “Right of across m 
axis” and “Left of across m axis”. There are also two-valued 
and three-valued SRAs (e.g. "A is between B and C across 
axis m"). 

iron:SRA equivalent-to iron:ImageInterpretation and 
  has-agent some (biotop:Human and  
  has-direct-participant  =1 iron:Cluster and 
  has-indirect-participant =1 iron:Cluster   

As in  [14], SRAs subsume also distance relations, such as 
“Close to” and “Far from”, and topological relations, such.as 
“Intersects with”, “Is interior to” and “Is exterior to”. Based 
on the same paradigm the SRAs can be enhanced by fuzzy 

logic so that the vagueness of the real world relations is cap-
tured. 

E. Concrete Domains 
Concrete domains like numeric values are not expressible in 

OWL-DL. Many interpretation classes and features require the 
reference to some kind of numeric value. As suggested in  [14] 
this can be represented OWL-DL using XML schema. As an 
alternative we consider the introduction of a subtype of bio-
top:quality, called iron:OrdinalQuality that projects into an 
iron:OrdinalQualityRegion, a subtype of biotop: Quali-
tyRegion. Rounded probability values can be represented in 
such an ordinal quality region as OWL classes like iron: 
0.05_Probability, iron:0.1_Probability, etc. Together with 
intervals like iron: 0.3_Probability_or_less inferences re-
garding order relations can be drawn. In IROn ontology ordi-
nal qualities are exemplified for probability intervals and fea-
ture values. The drawback of this method is the huge number 
of classes necessary, especially for very fine-grained descrip-
tions. Although these can be easily created automatically they 
inflate the ontology and have a negative impact on the per-
formance.  

IV. DISCUSSION 
Comparing our approach with published image ontologies, 

we claim that it is the one that most forcefully implements 
principles of formal ontology. This is rather an exception than 
the rule, because with the popularity of the Semantic Web and 
its ontology language OWL we frequently observe that vo-
cabularies or thesauri are being carelessly “ontologized” re-
gardless of the strict semantics OWL imposes. An example of 
this is the OWL representation of RadLex, which intermingles 
the language level with the object level: it allows to relate the 
same kind of entities via synonym_of and tributary_of.  Al-
though we do not advocate to re-use the RadLex owl file like 
done in  [7], we base our architectural principles on those ear-
lier approaches. Just as Marwede et al.  [4] and Mejino et al. 
 [6] we propose to maintain the domain of anatomy and the 
domain of imaging separately. What we name "Diagnostic 
Interpretation" is similar to the "reporting layer" introduced by 
Marwede et al., who, however do not present a solution of 
how to express diagnostic certainty. Another difference is 
their use of Protégé Frames, which is semantically not as ex-
plicit as OWL. Mejino et al's proposal to selectively re-use an 
anatomy ontology as a source for what corresponds to image 
regions of interest is principally useful to avoid redundancies 
between the image entity and the subject-matter sub-
ontologies.  However, we disagree with their way to transfer 
spatial relations from real anatomy to medical images: 
whereas in a living organism every heart (anatomy) is located 
in some thorax (anatomy) not every heart (image) is located in 
some thorax (image). So there is no region of interest in a 
coronary angiography image that has any correspondence to 
the patient's thorax. 

IROn was mainly inspired by the idea of using a formaliza-
tion of 2D spatial relations to resolve ambiguities in image 



 

interpretation as described in  [14]. However, the 2D spatial 
relations between the depicted objects can be defined by vis-
ual observations, whereas the spatial relations in a multidi-
mensional space cannot be visually observed. In IROn this 
information can be provided by the so called ‘ground truth’ 
information extracted from images annotated by domain ex-
perts. For example, a radiologist can annotate two ROIs in a 
chest radiograph: region A that belongs to an abnormal tissue 
and region B that belongs to a normal tissue. The relations 
between the cluster of feature vectors extracted from A and the 
cluster of feature vectors extracted from B can be considered 
as ground truth relations described by IROn in the feature 
space.  

IROn can also be used to describe image content with 2D 
spatial relations similarly to the current imaging ontologies, 
e.g. by using the pixel coordinates as features. Therefore, 
IROn is more generally applicable than current imaging on-
tologies.    

Furthermore, considering that feature space representations 
can be derived from data of other modalities, the applicability 
of IROn extends beyond the image domain provided that mo-
dality-specific data representations are included.  

V. CONCLUSION 
We presented IROn, an ontology formalizing fundamental 

concepts and relations regarding image representations used in 
medical image mining. This ontology builds on previous work 
to establish more formal links between low level image repre-
sentations and high level semantics. Its major advantage over 
state of the art approaches is that it can be used for the de-
scription of the spatial relations between clusters of image 
feature vectors in multidimensional feature spaces.  

The proposed ontology will be integrated in a multimodal 
data mining system utilizing image evidences to extract in-
formation about the presence and the progress of infections. 
The purpose of such a system will be to improve patients’ 
safety by the prevention of adverse events related with anti-
biotherapy. For example, pulmonary infiltrates visible in a 
plain chest radiograph can be evidences of a pulmonary infec-
tion. By extracting information about the evolution of the in-
filtrates in time one can derive conclusions about the progress 
of the disease, responding to a prescribed antibiotherpy or not.  

Our immediate research objectives include the experimental 
application of the proposed ontology for various medical im-
age mining tasks and its extension to support multimodal data 
mining.  
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