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Abstract. A serious drawback of kernel methods, and Support Vector
Machines (SVM) in particular, is the difficulty in choosing a suitable
kernel function for a given dataset. One of the approaches proposed to
address this problem is Multiple Kernel Learning (MKL) in which several
kernels are combined adaptively for a given dataset. Many of the existing
MKL methods use the SVM objective function and try to find a linear
combination of basic kernels such that the separating margin between the
classes is maximized. However, these methods ignore the fact that the
theoretical error bound depends not only on the margin, but also on the
radius of the smallest sphere that contains all the training instances. We
present a novel MKL algorithm that optimizes the error bound taking
account of both the margin and the radius. The empirical results show
that the proposed method compares favorably with other state-of-the-art
MKL methods.

Key words: Learning Kernel Combination, Support Vector Machines,
convex optimization

1 Introduction

Over the last few years kernel methods [1, 2], such as Support Vector Machines
(SVM), have proved to be efficient machine learning tools. They work in a feature
space implicitly defined by a positive semi-definite kernel function, which allows
the computation of inner products in feature spaces using only the objects in
the input space.

The main limitation of kernel methods stems from the fact that in general
it is difficult to select a kernel function, and hence a feature mapping, that is
suitable for a given problem. To address this problem several several attempts
have been recently made to learn kernel operators directly from the data [3–12].
The proposed methods differ in the objective functions (e.g. CV risk, margin
based, alignment, etc.) as well as in the classes of kernels that they consider
(e.g. combination of finite or infinite set of basic kernels).

The most popular approach in the context of kernel learning considers a
finite set of predefined basic kernels which are combined so that the margin-
based objective function of SVM is optimized. The learned kernel K is a linear
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combination of basic kernels Ki, i.e. K(x, x′) =
∑M

i=1 µiKi(x, x′), µi ≥ 0, where
M is the number of basic kernels, and x and x′ are input objects. The weights µi

of the kernels are included in the margin-based objective function. This setting
is commonly referred to as the Multiple Kernel Learning (MKL).

The MKL formulation has been introduced in [3] as a semi-definite program-
ming problem, which scaled well only for small problems. [7] extended that work
and proposed a faster method based on the conic duality of MKL and solved
the problem using Sequential Minimal Optimization (SMO). [5] reformulated the
MKL problem as semi-infinite linear problem. In [6] the authors proposed an ad-
justment in the cost function of [5] to improve predictive performance. Although
the MKL approach to kernel learning has some limitations (e.g. one has to choose
the basic kernels), it is widely used because of its simplicity, interpretability and
good performance.

The MKL methods that use the SVM objective function do not exploit the
fact that the error bound of SVM depends not only on the separating margin,
but also on the radius of the smallest sphere that encloses the data. In fact
even the standard SVM algorithms do not exploit the latter, because for a given
feature space the radius is fixed. However in the context of MKL the radius is
not fixed but is a function of the weights of the basic kernels.

In this paper we propose a novel MKL method that takes account of both
radius and margin to optimize the error bound. Following a number of transfor-
mations, these problems are cast in a form that can be solved by the two step
optimization algorithm given in [6].

The paper is organized as follows. In Section 2 we introduce the general
MKL framework. Next, in Section 3 we discuss the various error bounds that
motivate the use of the radius. The main contribution of the work is presented
in Section 4 where we propose a new method for multiple kernel learning that
aims to optimize the margin- and radius-dependent error bound. In Section 5 we
present the empirical results on several benchmark datasets. Finally, we conclude
with Section 6 where we also present pointers to future work.

2 Multiple kernel learning problem

Consider a mapping of instances x ∈ Xi, to a new feature space Hi

x → Φi(x) ∈ Hi (1)

This mapping can be performed by a kernel function Ki(x,x′) which is de-
fined as the inner product of the images of two instances x and x′ in Hi, i.e.
Ki(x,x′) = 〈Φi(x),Φi(x

′)〉; Hi may have even infinite dimensionality. Typically,
the computation of the inner product in Hi is done implicitly, i.e. without having
to compute explicitly the images Φi(x) and Φi(x

′).

2.1 Original problem formulation of MKL

Given a set of training examples S = {(x1, y1), ..., (xl, yl)} and a set of basic
kernel functions, Z = {Ki(x,x′)|i := 1, . . .M}, the goal of MKL is to optimize
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a cost function Q(f(Z, µ)(x,x′), S) where f(Z, µ)(x,x′) is some positive semi-
definite function of the set of the basis kernels, parametrized by µ; most often a
linear combination of the form:

f(Z, µ)(x,x′) =

M∑

i=1

µiKi(x,x′), µi ≥ 0,

M∑

i

µi = 1 (2)

To simplify notation we will denote f(Z, µ) by Kµ. In the remaining part of
this work we will only focus on the normalized versions of Ki, defined as:

Ki(x,x′) :=
Ki(x,x′)√

Ki(x,x) · Ki(x′,x′)
. (3)

If Kµ is a linear combination of kernels then its feature space Hµ is given by
the mapping:

x → Φµ(x) = (
√

µ1Φ1(x), ...,
√

µMΦM (x))T ∈ Hµ (4)

where Φi(x) is the mapping to the Hi feature space associated with the Ki

kernel, as this was given in Formula 1.
In previous work within the MKL context the cost function, Q, has taken

different forms such as the Kernel Target Alignment, which measures the “good-
ness“ of a kernel for a given learning task [9], or the typical SVM cost function
combining classification error and the margin [3, 5, 6], or as in [4] any of the
above with an added regularization term for the complexity of the combined
kernel.

3 Margin and radius based error bounds

There are a number of theorems in statistical learning that bound the expected
classification error of the thresholded linear classifier, that corresponds to the
maximum margin hyperplane, by quantities that are related to the margin and
the radius of the smallest sphere that encloses the data. Below we give two of
them that are applicable on linearly separable and non-separable training sets,
respectively.

Theorem 1 [10], Given a training set S = {(x1, y1), ..., (xl, yl)} of size l, a
feature space H and a hyperplane (w, b), the margin γ(w, b, S) and the radius
R(S) are defined by

γ(w, b, S) = min
(xi,yi)∈S

yi(〈w,Φ(xi)〉 + b)

‖w‖
R(S) = min

a

max
i

‖Φ(xi) − a‖

The maximum margin algorithm Ll : (X ×Y)l → H×R takes as input a training
set of size l and returns a hyperplane in feature space such that the margin
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γ(w, b, S) is maximized. Note that assuming the training set is separable means
that γ > 0. Under this assumption, for all probability measures P underlying the
data S, the expectation of the misclassification probability

perr(w, b) = P (sign(〈w,Φ(X)〉 + b) 6= Y )

has the bound

E{perr(Ll−1(Z))} ≤ 1

l
E

{
R2(Z)

γ2(Ll(Z), Z)

}

The expectation is taken over the random draw of a training set Z of size l − 1
for the left hand side and l for the right hand side.

The following theorem gives a similar result for the error bound of the linearly
non-separable case.

Theorem 2 [13], Consider thresholding real-valued linear functions L with unit
weight vectors on an inner product space H and fix γ ∈ R+. There is a constant
c, such that for any probability distribution D on H×{−∞,∞} with support in a
ball of radius R around the origin, with probability 1− δ over l random examples
S, any hypothesis f ∈ L has error no more than:

err(f)D ≤ c

l
(
R2 + ‖ξ‖2

2

γ2
log2l + log

1

δ
), (5)

where ξ = ξ(f, S, γ) is the margin slack vector with respect to f and γ.

It is clear from both theorems that the bound on the expected error depends not
only on the margin but also on the radius of the data, being a function of the
R2/γ2 ratio. Nevertheless standard SVM algorithms can ignore the dependency
of the error bound on the radius because for a fixed feature space the radius
is constant and can be simply ignored in the optimization procedure. However
in the MKL scenario where the Hµ feature space is not fixed but depends on
the parameter vector µ the radius is no longer fixed but it is a function of µ

and thus should not be ignored in the optimization procedure. The radius of the
smallest sphere that contains all instances in the H feature space defined by the
Φ(x) mapping is computed by the following formula [14]:

min
R,Φ(x0)

R2 (6)

s.t. ‖Φ(xi) − Φ(x0)‖2 ≤ R2, ∀i

It can be shown that if Kµ is a linear combination of kernels, of the form given
in Formula 2, then for the Rµ radius of its Hµ feature space the following
inequalities hold:

max
i

(µiR
2
i ) ≤ R2

µ ≤
M∑

i=1

µiR
2
i ≤ max

i
(R2

i ), (7)

s.t.

M∑

i

µi = 1
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where Ri is the radius of the component feature space Hi associated with the
Ki kernel. The proof of the above statement is given in the appendix.

4 MKL with margin and radius optimization

In the next sections we will show how we can make direct use of the dependency
of the error bound both on the margin and the radius in the context of the MKL
problem in an effort to decrease even more the error bound than what is possible
by optimizing only over the margin.

4.1 Soft margin MKL

The standard l2-soft margin SVM is based on theorem 2 and learns maximal
margin hyperplanes while controlling for the l2 norm of the slack vector in an
effort to optimize the error bound given in equation 5; as already mentioned
previously the radius although it appears in the error bound is not considered
in the optimization problem due to the fact that for a given feature space it is
fixed. The exact optimization problem solved by the l2-soft margin SVM is [13]:

min
w,b,ξ

1

2
〈w,w〉 +

C

2

l∑

i=1

ξ2
i (8)

s.t. yi(〈w,Φ(xi)〉 + b) ≥ 1 − ξi, ∀i

The solution hyperplane (w∗, b∗) of this problem realizes the maximum margin
classifier with geometric margin γ = 1

‖w∗‖ .

When instead of a single kernel we learn with a combination of kernels Kµ

then the radius of the resulting feature space Hµ depends on the parameters
µ which are also learned. We can profit from this additional dependency and
optimize not only for the margin but also for the radius, as Theorems 1 and 2
suggest, in the hope of reducing even more the error bounds than what would
be possible by just focusing on the margin.

A straightforward way to do so is to alter the cost function of the above
optimization problem so that it also includes the radius. Thus we define the
primal form of soft margin MKL optimization problem as follows:

min
w,b,ξ,µ

1

2
〈w,w〉R2

µ +
C

2

l∑

i=1

ξ2
i (9)

s.t. yi(〈w,Φ(xi)〉 + b) ≥ 1 − ξi, ∀i
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Accounting for the form Φµ of the feature space Hµ, as it is given in equa-
tion 4, this optimization problem can be rewritten as:

min
w,b,ξ,µ

1

2

M∑

k

〈wk,wk〉R2
µ +

C

2

l∑

i=1

ξ2
i (10)

s.t. yi(

M∑

k

〈wk,
√

µkΦk(xi)〉 + b) ≥ 1 − ξi, ∀i

where the w is the same as that of Formula 9 and equal to (w1, . . . ,wM ), R2
µ

can be computed by equation 6. By letting w :=
√

µ.w then wk :=
√

µkwk we
can rewrite equation 10 as1:

min
w,b,ξ,µ

1

2

M∑

k

〈wk,wk〉
µk

R2
µ +

C

2

l∑

i

ξ2
i (11)

s.t. yi(

M∑

k

〈wk,Φk(xi)〉 + b) ≥ 1 − ξi,

M∑

k=1

µk = 1, µk ≥ 0, ∀k

The non-negativity of µ is required to guarantee that the kernel combination
is a valid kernel function; the constraint

∑M

k=1 µk = 1 is added to make the
solution interpretable (kernel with bigger weight can be interpreted as more
important one) and to get a specific solution (note that if µ is solution of 11

(without the constraint
∑M

k=1 µk = 1), then λµ, λ ∈ R
+ is also its solution).

We will denote the cost function of equation 11 by F (w, b, ξ, µ). F is not a
convex function, this is probably the main reason why in current MKL algorithms
the radius is simply removed from the original cost function, therefore they do
not really optimize the generalization error bound.

From the set of inequalities given in equation 7 we have R2
µ ≤

∑M
k µkR2

k and
from this we can get:

F (w, b, ξ, µ) = 1
2

∑M
k

〈wk,wk〉
µk

R2
µ + C

2

∑l
i ξ2

i ≤ (12)

1
2

∑M
k

〈wk,wk〉
µk

∑M
k µkR2

k + C
2

∑l
i ξ2

i =

(1
2

∑M
k

〈wk,wk〉
µk

+ C

2
P

M
k

µkR2

k

∑l
i ξ2

i )
∑M

k µkR2
k ≤

(1
2

∑M
k

〈wk,wk〉
µk

+ C

2
P

M
k

µkR2

k

∑l
i ξ2

i ) = F̃ (w, b, ξ, µ)

The last inequality holds because in the context we examine we have
∑M

k µkR2
k ≤

1. This is a result of the fact that we work with the normalized feature spaces,

1 Note that if µk = 0 then from the dual form we have wk = 0. In this case, we use
the convention that 0

0
= 0.
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using the normalized kernels as these were defined in equation 3, thus we have
R2

k ≤ 1 and since
∑M

k µk = 1 it holds that:
∑M

k µkR2
k ≤ 1. Since F̃ is an

upper bound of F and moreover it is convex2 we are going to use it as our
objective function. As a result, we propose to solve, instead of the original soft
margin optimization problem given in equation 11, the following upper bounding
convex optimization problem:

min
w,b,ξ,µ

1

2

M∑

k

〈wk,wk〉
µk

+
C

2
∑M

k µkR2
k

l∑

i

ξ2
i (13)

s.t. yi(
M∑

k

〈wk,Φk(xi)〉 + b) ≥ 1 − ξi,

M∑

k=1

µk = 1, µk ≥ 0, ∀k

The dual function of this optimization problem is:

Ws(α, µ) = −1

2

l∑

ij

αiαjyiyj

M∑

k

µkKk(xi,xj) (14)

+
l∑

i

αi −
∑M

k µkR2
k

2C
〈α, α〉

= −1

2

l∑

ij

αiαjyiyj(
M∑

k

µkKk(xi,xj) +

∑M

k µkR2
k

C
δij) +

l∑

i

αi

where δij is the Kronecker δ defined to be 1 if i = j and 0 otherwise. The dual
optimization problem is given as:

max
α,µ

Ws(α, µ) (15)

s.t.
∑

i

αiyi = 0,

αi ≥ 0, ∀i
l∑

ij

αiαjyiyjKk(xi,xj) =
R2

kC
∑

i ξ2
i

(
∑

k µkR2
k)2

, ∀k

In the next section we will show how we can solve this new optimization problem.

4.2 Algorithm

The dual function 14 is quadratic with respect to α and linear with respect to
µ. One way to solve the optimization problem 13 is to use a two step iterative

2 The convexity of this new function can be easily proved by showing that the Hessian
matrix is positive semi-definite.
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algorithm such as the ones described in [6], [10]. Following such a two step
approach, in the first step we will solve a quadratic problem that optimizes over
(w, b), while keeping µ fixed; as a consequence the resulting dual function is a
simple quadratic function of α which can be optimized easily. In the second step
we will solve a linear problem that optimizes over µ.

More precisely, the formulation of the optimization problem with the two-
step approach takes the following form:

min
µ

J(µ) (16)

s.t.

M∑

k=1

µk = 1, µk ≥ 0, ∀k

where

J(µ) =

{
minw,b

1
2

∑M

k
〈wk,wk〉

µk
+ C

2
P

M
k

µkR2

k

∑l

i ξ2
i

s.t. yi(
∑M

k 〈wk,Φk(xi)〉 + b) ≥ 1 − ξi

(17)

To solve the outer optimization problem, i.e. minµ J(µ), we use gradient descent
method. At each iteration, we fix µ, compute the value of J(µ) and then compute
the gradient of J(µ) with respect to µ. The dual function of Formula 17 is the
Ws(α, µ) function already given in Formula 14. Since µ is fixed we now optimize
only over α (the resulting dual optimization problem is much simpler compared
to the original soft margin dual optimization problem given in Formula 15):

max
α

Ws(α, µ)

s.t.
∑

i

αiyi = 0, αi ≥ 0, ∀i

which has the same form as the SVM quadratic optimization problem, the only
difference is that the C parameter here is equal to C

P

M
k

µkR2

k

.

For the strong duality, at the optimal solution α∗, the values of dual cost
function and primal cost function are equal. Thus the value of Ws(α, µ), and
the J(µ) value, is given by:

Ws(α
∗, µ) = −1

2

l∑

ij

α∗
i α

∗
jyiyj(

M∑

k

µkKk(xi,xj)

+

∑M

k µkR2
k

C
δij) +

l∑

i

α∗
i

The last step of the algorithm is to compute the gradient of the J(µ) function,
Formula 17, with respect to µ. As [6] have pointed out, we can use the theorem
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of Bonnans and Shapiro [15] to compute gradients of such functions. Hence, the
gradient is in the following form:

∂J(µ)

∂µk

= −1

2

l∑

ij

α∗
i α

∗
jyiyj(Kk(xi,xj) +

R2
k

C
δij)

To compute the optimal step in the gradient descent we used line search. The
complete two-step procedure is given in Algorithm 1.

Algorithm 1 R-MKL

Initialize µ1
k = 1

M
for k = 1, ..., M

repeat
Set R2

µ =
PM

k µt
kR2

k

compute J(µt) as the solution of a quadratic optimization problem with K :=
PM

k µt
kKk

compute ∂J
∂µk

for k = 1, ..., M

compute optimal step γt

µt+1 ← µt + γt
∂J(µ)

∂µ

until stopCriteria is true

4.3 Computational complexity

At each step of the iteration we have to compute the solution of a standard SVM,
with kernel K =

∑M

k=1 µkKk, and C equal to C
P

M
k

µkR2

k

, which is a quadratic pro-

gramming problem with a complexity of O(n3) where n is number of instances.
Moreover, when µ is updated we have to recompute the approximation of R2

µ;
the complexity of this procedure is linear in the number of kernels, O(M).

5 Experiments

We experimented with ten different datasets. Six of them were taken from the
UCI repository (Ionosphere, Liver, Sonar, Wdbc, Wpbc, Musk1), while four come
from the domain of genomics and proteomics (ColonCancer, CentralNervousSys-
tem, FemaleVsMale, Leukemia) [16]; these four are characterized by small sample
and high dimensionality morphology. A short description of the datasets is given
in Table 1. We experimented with two different types of basic kernels, i.e. poly-
nomials and Gaussians, and performed two sets of experiments. In the first set
of experiments we used both types of kernels and in the second one we focused
only on Gaussians kernels. For each set of experiments the total number of basic
kernels was 20; for the first set we used polynomial kernels of degree one, two,
and three and 17 Gaussians with bandwidth δ that ranged from 1 to 17 with
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Table 1. Short description of the classification datasets used

Dataset #Inst #Attr #Class1 #Class2

Ionosphere 351 34 126 225

Liver 345 6 145 200
Sonar 208 60 97 111
Wdbc 569 32 357 212

Wpbc 198 34 151 47
Musk1 476 166 269 207

ColonCancer 62 2000 40 22
CentralNervous 60 7129 21 39
FemaleVSMale 134 1524 67 67

Leukemia 72 7128 25 47

a step of one; for the second set of experiments we only used Gaussian kernels
with bandwidth δ that ranged from 1 to 20 with a step of one.

We compared our MKL algorithm (denoted as R-MKL) with two state-of-the-
art MKL algorithms: Support Kernel Machine (SKM) [7], and SimpleMKL [6].
We estimate the classification error using 10-fold cross validation. For comparison
purposes we also provide the performances of the best single kernel (BK) and
the majority classifier (MC); the latter always predicts the majority class. The
performance of the BK is that of the best single kernel estimated also by 10-fold
cross validation, since it is the best result after seeing the performance of all
individual kernels on the available data it is optimistically biased. We tuned the
parameter C in an inner-loop 10-fold cross-validation choosing the values from
the set {0.1, 1, 10, 100}. All algorithms terminate when the duality gap is smaller
than 0.01. All input kernel matrices are normalized by equation 3.

We compared the significance level of the performance differences of the
algorithms with McNemar’s test [17], where the level of significance is set to 0.05.
We also established a ranking schema of the examined MKL algorithms based
on the results of the pairwise comparisons [18]. More precisely, if an algorithm
is significantly better than another it is credited with one point; if there is no
significant difference between two algorithms then they are credited with 0.5
points; finally, if an algorithm is significantly worse than another it is credited
with zero points. Thus, if an algorithm is significantly better than all the others
for a given dataset it has a score of two. We give the full results in Tables 2, 3.
For each algorithm we report a triplet in which the first element is the estimated
classification error, the second is the number of selected kernels, and the last is
the above described rank.

Our kernel combination algorithm does remarkably well in the first set of
experiments, Table 2, in which it is significantly better than both other algo-
rithms in four datasets and significantly worse in two; for the four remaining
datasets there are no significant differences. Note that in the cases of Wpbc and
CentralNervousSystem all algorithms have a performance that is similar to that
of the majority classifier, i.e. the learned models do not have any discriminatory
power. By examining the classification performances of the individual kernels
on these datasets we see that none of them had a performance that was bet-
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ter than that of the majority classifier; this could explain the bad behavior of
the different kernel combination schemata. Overall, for this set of experiments
R-MKL gets 12 significance points over the different datasets, SKM 10.5, and
SimpleMKL 7.5. The performance improvements of R-MKL over the two other
methods are are quite impressive on those datasets on which R-MKL performs
well; more precisely its classification error is around 30%, 50%, and 40%, of that
of the other algorithms for Wdbc, Musk1, and Leukemia datasets respectively.

In the second set of experiments,Table 3, all methods perform very poorly in
seven out of ten datasets; their classification performance is similar to that of the
majority classifier. In the remaining datasets, with the exception of ColonCancer
for which SKM failed (we used the implementation provided by the authors of
the algorithm and it returns with some errors), there is no significant difference
between the three algorithms. The collectively bad performance in the last seven
databases is explained by the fact that none of the basic kernels had a classifi-
cation error that was better than that of the majority classifier. Overall, for this
set of experiments SKM scores 9 points, and Simple MKL and R-MKL score
10.5 points each.

Comparing the number of selected kernels by the different kernel combination
methods using a paired t-test (significance level of 0.05) revealed no statistically
significant differences between the three algorithms on both sets of experiments.

In an effort to get an empirical estimation of the quality of the approxima-
tion of the radius that we used to make the optimization problems convex, we

computed the approximation error defined as
PM

k
µkR2

k−R2

µ

R2
µ

. We computed this

error over the different folds of the ten-fold cross-validation for each dataset.
The average approximation error over the different datasets was 0.0056. We also
computed this error over 1000 random values of µ for each dataset and the av-
erage error was 0.0104. Thus, the empirical evidence seems to indicate that the
R2

µ ≤
∑M

k µkR2
k bound is relatively tight, at least for the datasets we examined.

6 Conclusion and future work

In this paper we presented a new kernel combination method that incorporates
in its cost function not only the margin but also the radius of the smallest sphere
that encloses the data. This idea is a direct implementation of well known error
bounds from statistical learning theory. To the best of our knowledge this is
the first work in which the radius is used together with the margin in an effort
to minimize the generalization error. Even though the resulting optimization
problems were non-convex and we had to use an upper bound on the radius to
get convex forms, the empirical results were quite encouraging. In particular, our
method competed with other state-of-the-art methods for kernel combination,
thus demonstrating the benefit and the potential of the proposed technique.
Finally, we mention that it is still a challenging research direction to fully exploit
the examined generalization bound.

In future work we would like to examine optimization techniques for directly
solving the non-convex optimization problem presented in Formula 11. In partic-
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Table 2. Results for the first experiments, where both polynomial and Gaussian kernels
are used. Each triplet x,y,z gives respectively the classification error, the number of
selected kernels, and the number of significance point that the algorithm scores for the
given experiment set and dataset. Columns BK and MC give the errors of the best
single kernel and the majority classifier, respectively.

D. Set SKM Simple R-MKL BK MC

Ionos. 04.00,02,1.5 03.71,02,1.5 04.86,02,0 05.71 36.00

Liver 33.82,05,1.5 33.53,13,1.5 36.18,03,0 30.29 42.06

Sonar 15.50,01,1.0 15.50,01,1.0 15.50,01,1 17.50 46.00

Wdbc 11.25,03,1.0 13.04,18,0.0 03.75,18,2 08.57 37.32

Wpbc 23.68,17,1.0 23.68,01,1.0 23.68,01,1 23.68 23.68

Musk1 11.70,07,1.0 13.40,18,0.0 06.60,01,2 04.47 43.83

Colon. 18.33,18,1.0 18.33,18,1.0 16.67,18,1 11.67 35.00

CentNe. 35.00,17,1.0 35.00,17,1.0 35.00,17,1 31.67 35.00

Female. 33.85,20,1.0 38.92,18,0.0 20.00,18,2 22.31 60.00

Leuke. 07.14,18,0.5 07.14,18,0.5 02.86,18,2 02.86 34.29

Table 3. Results for the second set of experiments, where only Gaussian kernels are
used. The table contains the same information as the previous one.

D. Set SKM Simple R-MKL BK MC

Ionos. 04.86,02,1.0 05.43,04,1.0 05.14,03,1.0 05.14 36.00

Liver 33.53,03,1.0 33.53,20,1.0 33.53,16,1.0 34.71 42.06

Sonar 15.50,01,1.0 15.50,01,1.0 15.50,01,1.0 17.00 46.00

Wdbc 37.32,03,1.0 37.32,19,1.0 37.32,20,1.0 37.32 37.32

Wpbc 23.68,20,1.0 23.68,19,1.0 23.68,20,1.0 23.68 23.68

Musk1 43.83,14,1.0 43.83,19,1.0 43.83,20,1.0 43.83 43.83

Colon. NA 35.00,20,1.5 35.00,20,1.5 35.00 35.00

CentNe. 35.00,20,1.0 35.00,20,1.0 35.00,20,1.0 35.00 35.00

Female. 60.00,20,1.0 60.00,20,1.0 60.00,20,1.0 60.00 60.00

Leuke. 34.29,20,1.0 34.29,20,1.0 34.29,20,1.0 34.29 34.29

ular, we will examine whether it is possible to decompose the cost function as a
sum convex and concave functions, or to represent it as d.m functions (difference
of two monotonic functions) [19, 20]. Additionally, we plan to analyze the bound

R2
µ ≤

∑M
k µkR2

k and see how it relates with the real optimal value.
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Appendix

Proof of Inequality 7. If K(x,x′) is the kernel function associated with the Φ(x)
mapping then the computation of the radius in the dual form is given in [1]:

max
βiβj

R2 =

l∑

i

βiK(xi,xi) −
l∑

ij

βiβjK(xi,xj) (18)

s.t.

l∑

i

βi = 1, βi ≥ 0

If β∗ is the optimal solution of (18) when K = Kµ =
∑M

1 µkKk, and β̂k is the
optimal solution of (18) when K = Kk, i.e. :

R2
µ =

M∑

k=1

µk(

l∑

i=1

β∗
i Kk(xi,xi) −

l∑

i,j=1

β∗
i β∗

j Kk(xi,xj))

R2
k =

l∑

i=1

β̂k
iKk(xi,xi) −

l∑

i,j=1

β̂k
iβ̂

k
jKk(xi,xj)

then

l∑

i=1

β∗
i Kk(xi,xi) −

l∑

i,j=1

β∗
i β∗

j Kk(xi,xj) ≤

l∑

i=1

β̂k
iKk(xi,xi) −

l∑

i,j=1

β̂k
iβ̂

k
jKk(xi,xj)

Therefore: R2
µ ≤

∑M

k=1 µkR2
k

Proof of convexity of R-MKL (Eq.13) To prove that 13 is convex, it is enough

to show that functions x2

µ
, where x ∈ R, µ ∈ R

+, and ξ2

P

M
k

αkµk
, where ξ ∈

R, µk, αk ∈ R
+ are convex. The first is quadratic-over-linear function which is

convex. The second is convex because its epigraph is a convex set [21].


